Scripting 2

TSBE Frihlingssemester 2018
http://smlz.github.i0/tsbe-2018fs/scri/

Marco Schmalz
marco.schmalz@gibb.ch

[D)evsa |

http://creativecommons.org/licenses/by-sa/4.0/

Kursubersicht

1. Tools, Zahlen, Strings und Entscheidungen

2. Funktionen, Test-driven development, Listen und Schleifen
3. dicts

4. Files und externe Kommandos

5. Praxistipps, externe Libraries und Repetition

Heute

1. Funktionen

2. Test-driven development

3. Person of the Day: Dave Beazley
4. Listen und Schleifen

5. Crazy Code: Rekursion

Funktionen

Eine Funktion mit dem Namen sag_hallo definieren:

def sag_hallo():
print(f"Guten Tag!")

Achtung: Doppelpunkt und Einrlicken zu Beginn der Funktion.
Die Funktion aufrufen:

sag_hallo() # Gibt die Mitteilung 'Guten Tag!' auf der Konsole aus.

Eine Funktion wird durch das Anhangen von runden Klammern aufgerufen bzw.
ausgefuhrt.

Funktionsparameter

Funktionsdefinition:

def sag_hallo(name):
print(f"Guten Tag {name}!")

Funktionsaufruf:

sag_hallo("Kurt") # Gibt die Mitteilung 'Guten Tag Kurt!' auf der Konsole
aus.

Es kdnnen mehrere durch Komma abgetrennte Funktionsparameter definiert
werden.

def sag_hallo(vorname, nachname):
print(f"Guten Tag {vorname} {nachname}!")

Funktionen als Abfolge von
Befehlen (Prozeduren)

Mit Funktionen konnen mehrere Befehle zusammen gefasst, und dann spater
aufgerufen werden.

Beispiel:

def begruessung():
print("Guten Tag!")
print("Was mochten sie gerne tun?")
print("Daten eingeben: E")
print("Daten abfragen: A")

def ende():

print("Vielen Dank fir die Verwendung unseres Programms.")
print("(c) 2018, Wasserfall GmbH")

Diese Art des Programmierens wird oft als prozeduralbezeichnet.

Funktionen mit Rickgabewerten

Mit der return Anweisung, kann ein Wert aus einer Funktion zuriick gegeben
werden.

def summe(a, b):
return a + b

def kreisumfang(radius):
return 3.14 * 2 * radius

def anrede(geschlecht, vorname, nachname):
if geschlecht == "f":
return f"Liebe {vorname} {nachname}"
else:
return f"Lieber {vorname} {nachname}

Aufruf der Funktionen:

>>> summe(1, 2)

3

>>> anrede("f", "Marie", "Curie")
'Liebe Marie Curie'

Mathematische Funktion

Eine Funktion kann nicht nur als Abfolge von Befehlen betrachtet werden,
sondern mathematische Funktion, welche aus einem oder mehreren
Eingabewerten (Funktionsparameter) einen Ausgabewert berechnet.

Beispiele:

def durchschnitt(a, b):
return (a + b) / 2

def betrag(a):
if a < 0:
return -a
else:
return a

def gerade_ungerade(a):
if a % 2 == 0:
return "gerade"
else:
return "ungerade"

Dieser Programmierstil wird als funktional Bezeichnet.

Funktionen testen

Mit der assert-Anweisung konnen Bedingungen Uberpriift werden, welche immer
erflllt sein mussen.

assert betrag(5) ==
assert betrag(-4) ==

assert durchschnitt(4.5, 5) == 4.75

Dies ist die einfachste Form um zu tberprifen, dass die geschriebenen Funktionen
wirklich das tun, was sie sollen.

Funktionen bei denen wie bei mathematische Funktionen der Rickgabewert nur
von den Funktionsparametern abhangt, lassen sich besonders effizient testen.

Wenn man die Tests (also die assert-Anweisungen) schreibt, bevor man die
eingentliche Funktion programmiert, spricht man von Test Driven Development.

Exkurs 1: Funktionen als Werte

In Python kénnen Funktionen genau so wie zum Beispiel Strings oder Zahlen
herum gereicht werden.

def summe(lauf_a, lauf b):
return lauf_a + lauf_b

def minimum(lauf_a, lauf_b):
if lauf_a < lauf _b:
lauf_a
else:
lauf_b

def schluss_zeit(lauf_a, lauf_b, berechnungsfunktion):
return berechnungsfunktion(lauf_a, lauf_b)

zeilt_qualifying = schluss_zeit(lauf_a, lauf_b, minimum)
zeit_rennen = schlusszeit(lauf_a, lauf_b, summe)
Man sagt, Funktionen seinen in Python first class citizens, also Blrger erster

Klasse. Wie andere Werte auch (Text-Strings, Zahlen, ...) kénnen sie Funktionen
Ubergeben, in Variablen abgespeichert werden, und so weiter.

10

Listen

Leere Liste erstellen:
leere_liste = []
Liste mit Inhalt erstellen:
ziffern = [0, 1, 2, 3, 4, 5, 6, 7, 8]
Listen kénnen wachsen, in dem man ihnen am Ende etwas anhangt (engl. append):

ziffern.append(9)
print(ziffern) # -> gibt [1, 2, 3, 4, 5, 6, 7, 8, 9] aus

Listen konnen gemischte Daten enthalten:

ziffern_komisch = ["eins", 2, "drei", 4, 5.0, "seven", "/\", 9]

11

Lange von Listen (len)

Die Funktion len berechnet die Lange einer Liste:

anzahl_ziffern = len(ziffern)
print(f"Es gibt {anzahl_ziffern} verschiedene Ziffern")

Text-Strings haben auch eine Lange:

message = "Hallo Leute!"
print("Lange der Mitteilung:", len(message))

12

Text aufsplitten und wieder
verbinden

Ein Text-String kann in eine Liste von Wortern zerlegt (engl. split) werden:

>>> "Es irrt der Mensch\nsolang' er strebt".split()
['Es', 'irrt', 'der', 'Mensch', "solang'", 'er', 'strebt']

Standardmassig wird der Text an den Leerzeichen und Zeilenumbriichen
aufgetrennt.

Es kann auch explizit ein Trenn-String angegeben werden:

>>> "192.168.10.177".split(".")

['192', '168', '10', '177']

>>> "AF::46::4A::97::0E::01" . .split("::")
['AF', '46', "4A', '97', 'OE', '01']

Eine Liste von Strings kann auch wieder zu einem einzigen String zusammen
gefligt werden:

>>> werte = ["Mr.", "Joaquin", "Phoenix", "Actor"]

Auf Elemente einer Liste zugreifen

Mit eckigen Klammern und einer Ganzzahl als Index, kann auf die einzelnen
Elemente einer Liste zugegriffen werden:

S>> 'L_‘Lste= [|a|’ |b|’ IC" |d|, |e|]
>>> liste[0]

|a|

>>> liste[2]

C

Der verwendete Index kann auch in einer Variable definiert sein:

>>> index = 1
>>> liste[index]
Ibl

14

Auf Elemente am Ende einer Liste
zugreifen

Mit negativen Indizes wird vom Ende der Liste her gezahlt:

>SS -L:Lste= [la', |b|, |C|, ldl’ lel]
>>> liste[-1]

|e|

>>> liste[-2]

|d|

>>> liste[-5]

d

Praktisch ist vor allem der Zugriff auf das letzte Element einer Liste:

>>> liste[-1]
|e|

15

For-Schleife

Uber Listen und listenahnliche Objekte kann iteriert werden:

liste = ['a', 'b', 'c']

for buchstabe in liste: # Uber den Inhalt von Liste iterieren
print(f"Der Buchstabe ist: {buchstabe}")

Ausgabe:

Der Buchstabe ist: a
Der Buchstabe ist: b
Der Buchstabe ist: c

Die Schleife wird fir jedes einzelne Element der Liste einmal durchgegangen. Der
Variabelnnamen flir das Element des aktuellen Durchlaufs der Schleife ist frei
wahlbar. Sie heisst buchstabe im obigen Fall.

16

Durchnummerierte For-Schleife

Bei der for-Schleife gibt es standartmassig keine Indexvariabel. Mit enumerate kann
aber eine Liste durchnummeriert werden:

liste = ['a', 'b', 'c']

for index, buchstabe in enumerate(liste):
print(f"Index {index}: {buchstabe}")

Ausgabe:

Index 0: a
Index 1: b
Index 2: c

Bei enumerate kann zusatzlich der Startwert der Indexvariabel ibergeben werden:

for index, buchstabe in enumerate(liste, 1):
print(f"Buchstabe Nummer {index} ist {buchstabe}")

17

While-Schleife

Die while-Schlaufe wird ausgeflihrt bis die angegebene Bedingung nicht mehr
erfullt ist:

zahl = 16

while zahl >= 1:

print(zahl)
zahl = zahl / 2

Ausgabe:

6

1
8
4
2
1

[ocNoNoNO)

Eine Endlosschleife:

while True:
print("Ein Sprung in der Schallplatte!")

18

Vollstandiges Beispiel: Zahl als Wort

Verwendung moglichst vieler gesehener Konstrukte:

for-Loop
while-Loop
list.append
str.split
str.join

Ziel als Test mit assert formuliert:
assert zahlen_als_woerter(123) == 'eins-zwei-drei'

Weitere Hilfsmittel:

e Ganzzahldivision:12 // 5= 2
e Liste umkehren: reversed([1, 2, 3])=[3, 2, 1]

19

Vollstandiges Beispiel: Zahl als Wort

Code:

def ziffern_einer_zahl(zahl):
ziffern = []
while zahl > 0:
rest = zahl % 10
ziffern.append(rest)

zahl = zahl // 10 # Ganzzahldivision
return reversed(ziffern)

namen_von_ziffern = 'null eins zwei dreil vier finf sechs sieben acht
neun'.split()

def zahl_in_woertern(zahl):
ziffern = ziffern_einer_zahl(zahl)
woerter = []
for ziffer in ziffern:

woerter.append(namen_von_ziffern[ziffer])
return '-'.join(woerter)

Anwendung:

>>> zahl_in_woertern(117)
'eins-eins-sieben'

20

